EPFL

Blue Brain Open Platform

## Virtual labs to explore, build and simulate the brain

log in

# **Blue Brain Open Platform**

Over the course of the past two decades, the Blue Brain Project has pioneered simulation neuroscience as a complement to experimental and theoretical approaches.

Now, we are releasing a platform for the neuroscience community to leverage simulation neuroscience and accelerate their research.

#### The Blue Brain Open Platform offers the capability of exploring, building and simulating brain models.

- Provides users with a comprehensive brain-guided atlas exploration of experimental, model, and simulation data, while mining and integrating open-access articles.
- Enables users to configure virtual labs, tailor brain models to their specifications, and conduct simulations.
- Offers virtual labs to promote data-driven insights among neuroscientists through different collaborative projects in order to accelerate the understanding of the underlying mechanisms of brain function and disease.
- Provides an AI-driven supportive tool for drafting manuscripts based on user's explorations, models and simulations.

## **Leveraging Simulation Neuroscience**

#### www.openbluebrain.com

## Explore

Examine neuronal models and virtual simulations through 3D interactive exploration and literature searches.



A Digital Brain Atlas offers a guided exploration of the experimental data and the model-inferred data, as well as of the literature-based knowledge of the brain.



### Build

Build your own brain configurations by customizing cell compositions, neuronal models, and connectivity metrics.

Employing the same intuitive atlas-based navigation, modifications can be integrated at all levels of the model.



Tailored brain configurations are constructed by adjusting default cell compositions, assigning neuronal models, and configuring the desired connectivity patterns. This empowers users to recreate disease models or probe and redefine hypotheses related to specific brain function and dysfunction.

Use or edit reference digital brain tissue; single neurons, paired neurons, synaptomes, microcircuits, brain areas, brain regions, brain systems and whole brains.



## Simulate

Run your own virtual experiments and simulations.

Atlas-based experiments that mimic biological experiments are both designed and executed, utilizing either the default configuration or your custom edits. Parameters can be controlled and the code itself can be adapted.

## **Capabilities**

| Modeling of synapses                                                           | Modeling of biorealistic connectivity                                         |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| <ul> <li>Modeling of synapse dynamics</li> </ul>                               | <ul> <li>Connectivity from anatomical constraints (touch</li> </ul>           |
| <ul> <li>stochastic release</li> </ul>                                         | detection)                                                                    |
| <ul> <li>multivesicular release</li> </ul>                                     | <ul><li>Simplified connectivity models</li></ul>                              |
| <ul> <li>Modeling of synapse types</li> </ul>                                  | <ul> <li>Long range connectivity between brain regions at cellular</li> </ul> |
| <ul> <li>Modeling of gap junction</li> </ul>                                   | resolution                                                                    |
| <ul> <li>Modeling of yolumetric transmission</li> </ul>                        |                                                                               |
|                                                                                |                                                                               |
|                                                                                |                                                                               |
|                                                                                | Modeling of brain regions and circuits                                        |
|                                                                                | Atlasing                                                                      |
| Modeling of neurons                                                            | <ul> <li>atlas alignment and smoothing</li> </ul>                             |
| <ul> <li>Skeletonization of the EM volumes</li> </ul>                          | <ul> <li>atlas interpolation</li> </ul>                                       |
| <ul> <li>extraction of neuron skeletons</li> </ul>                             | <ul> <li>atlas region refinement (adding layers and barrels)</li> </ul>       |
| <ul> <li>extraction of neuron spines</li> </ul>                                | <ul> <li>flatmapping</li> </ul>                                               |
| <ul> <li>Repairing slicing artifact</li> </ul>                                 | <ul> <li>Derivation of neuronal composition from literature</li> </ul>        |
| <ul> <li>Automatic neuron classification</li> </ul>                            | constraints                                                                   |
| <ul> <li>Automatic neurite classification</li> </ul>                           | <ul> <li>Realistic placement of morphologies</li> </ul>                       |
| <ul> <li>Dendrite synthesis</li> </ul>                                         |                                                                               |
| <ul> <li>Axon synthesis (including long range)</li> </ul>                      |                                                                               |
| <ul> <li>Automatic optimization of electrical models</li> </ul>                |                                                                               |
| <ul> <li>automatic extraction of spiking features</li> </ul>                   | Machine Learning                                                              |
| <ul> <li>automatic fitting to spiking features</li> </ul>                      | Literature search                                                             |
| <ul> <li>automatic quality assurance of generalized models</li> </ul>          | <ul> <li>E-type classification</li> </ul>                                     |
| <ul> <li>Enhancing diversification of neuron morphologies</li> </ul>           | Feature recognition                                                           |
| (cloning)                                                                      | <ul> <li>Paper generator</li> </ul>                                           |
| ,                                                                              | <ul> <li>Parameter literature mining using Language Models</li> </ul>         |
|                                                                                |                                                                               |
| Visualization & Analysis                                                       |                                                                               |
| <ul> <li>Real-time visualization for large morphologically detailed</li> </ul> | Ion Channel Models                                                            |
| circuits and simulations                                                       | Channelpedia                                                                  |
| <ul> <li>Generation of bio-realistic meshes from neuron skeletons</li> </ul>   | <ul> <li>Systematic modeling of ion channel kinetics under</li> </ul>         |
| <ul> <li>Scientific analysis of simulations and campaigns</li> </ul>           | different temperatures                                                        |
| <ul> <li>Tools for large scale connectome analysis (connectome</li> </ul>      |                                                                               |
| utilities)                                                                     |                                                                               |
|                                                                                |                                                                               |
|                                                                                | NGV                                                                           |
|                                                                                | Modeling of vasculature                                                       |
|                                                                                | Astrocyte synthesis                                                           |
| Data Knowledge Engineering                                                     | End foot generation                                                           |
| <ul> <li>Ontology</li> </ul>                                                   | Simulation                                                                    |
|                                                                                |                                                                               |
|                                                                                |                                                                               |
| Subcellular                                                                    | Simulation                                                                    |
| <ul> <li>Blood flow</li> </ul>                                                 | <ul> <li>Simulate any neuron in the mouse brain, neocortical:</li> </ul>      |
| <ul> <li>Metabolism</li> </ul>                                                 | mouse, rat, human                                                             |
|                                                                                | Highly memory and CPU efficient simulation of neuron                          |
|                                                                                | compartmental models                                                          |
|                                                                                | Powerful in silico experimentation and parameterization                       |
|                                                                                | <ul> <li>Flexible tools for circuit manipulation</li> </ul>                   |
| General Enquiries                                                              | <ul> <li>Simulation of functional plasticity</li> </ul>                       |
|                                                                                | <ul> <li>Simulation of neuromodulation</li> </ul>                             |

N ANN CAN

info.bbp@epfl.ch www.openbluebrain.com